Big data analytics: que es

Big data analytics: que es

Empresas de análisis de grandes datos

El reto central de trabajar con Big Data reside en verificar la necesaria exactitud de los datos subyacentes. En este sentido, el big data es un complejo universo de datos al que sólo se puede acceder con tecnologías y métodos de análisis especiales de big data.
Desde un contexto relacionado con la producción, muchos empresarios están familiarizados con la analítica de big data principalmente como un instrumento para aprovechar los datos de las máquinas. Esta visión basada en datos identifica los tornillos de ajuste críticos dentro de los datos del proceso y del producto. En última instancia, con la ayuda del análisis de big data, las empresas fabrican mejores productos con procesos más eficientes.

Inteligencia empresarial

La recopilación de datos es diferente para cada organización. Con la tecnología actual, las organizaciones pueden recopilar datos estructurados y no estructurados de una variedad de fuentes, desde el almacenamiento en la nube hasta las aplicaciones móviles y los sensores IoT en las tiendas, entre otros. Algunos datos se almacenarán en almacenes de datos donde las herramientas y soluciones de inteligencia empresarial pueden acceder a ellos fácilmente. A los datos crudos o no estructurados que son demasiado diversos o complejos para un almacén se les pueden asignar metadatos y almacenarlos en un lago de datos.
Una vez recogidos y almacenados los datos, deben organizarse adecuadamente para obtener resultados precisos en las consultas analíticas, especialmente cuando son grandes y no están estructurados. Los datos disponibles crecen exponencialmente, lo que convierte el procesamiento de datos en un reto para las organizaciones. Una opción de procesamiento es el procesamiento por lotes, que examina grandes bloques de datos a lo largo del tiempo. El procesamiento por lotes es útil cuando hay un tiempo más largo entre la recogida y el análisis de los datos. El procesamiento de flujos examina pequeños lotes de datos a la vez, acortando el tiempo de espera entre la recogida y el análisis para una toma de decisiones más rápida. El procesamiento de flujos es más complejo y a menudo más caro.

Qué es la analítica de datos

La analítica de big data es el uso de técnicas analíticas avanzadas contra conjuntos de big data muy grandes y diversos que incluyen datos estructurados, semiestructurados y no estructurados, de diferentes fuentes y en diferentes tamaños, desde terabytes hasta zettabytes.
¿Qué son exactamente los big data? Puede definirse como conjuntos de datos cuyo tamaño o tipo supera la capacidad de las bases de datos relacionales tradicionales para capturar, gestionar y procesar los datos con baja latencia. Las características de los big data incluyen un alto volumen, una alta velocidad y una gran variedad. Las fuentes de datos se están volviendo más complejas que las de los datos tradicionales porque están siendo impulsadas por la inteligencia artificial (IA), los dispositivos móviles, los medios sociales y el Internet de las cosas (IoT). Por ejemplo, los diferentes tipos de datos proceden de sensores, dispositivos, vídeo/audio, redes, archivos de registro, aplicaciones transaccionales, web y medios sociales, muchos de ellos generados en tiempo real y a muy gran escala.
Con la analítica de big data, puede impulsar una toma de decisiones mejor y más rápida, la modelización y predicción de resultados futuros y la mejora de la inteligencia empresarial. A la hora de crear su solución de big data, considere el software de código abierto como Apache Hadoop, Apache Spark y todo el ecosistema Hadoop como herramientas de procesamiento y almacenamiento de datos rentables y flexibles, diseñadas para manejar el volumen de datos que se genera hoy en día.

Análisis de big data frente a ciencia de datos

La analítica de big data examina grandes cantidades de datos para descubrir patrones ocultos, correlaciones y otros conocimientos. Con la tecnología actual, es posible analizar los datos y obtener respuestas casi inmediatamente, un esfuerzo que es más lento y menos eficiente con las soluciones de inteligencia empresarial más tradicionales.
El concepto de big data existe desde hace años; la mayoría de las organizaciones entienden ahora que si capturan todos los datos que llegan a sus empresas, pueden aplicar la analítica y obtener un valor significativo de ellos. Pero incluso en los años 50, décadas antes de que nadie pronunciara el término «big data», las empresas utilizaban la analítica básica (esencialmente números en una hoja de cálculo que se examinaban manualmente) para descubrir ideas y tendencias.
Sin embargo, las nuevas ventajas que aporta el análisis de big data son la velocidad y la eficiencia. Mientras que hace unos años una empresa recopilaba información, ejecutaba análisis y descubría información que podía utilizarse para tomar decisiones en el futuro, hoy esa empresa puede identificar ideas para tomar decisiones inmediatas. La capacidad de trabajar más rápido -y mantenerse ágil- da a las organizaciones una ventaja competitiva que no tenían antes.

Usamos cookies para asegurar que le damos la mejor experiencia en nuestra web. Si continúa usando este sitio, asumiremos que está de acuerdo con ello. Nuestros socios (incluye a Google) podrán compartir, almacenar y gestionar sus datos para ofrecerle anuncios personalizados    Más información
Privacidad